
1. Introduction to Operators

An operator in C language is a symbol that performs a specific operation on one or more operands
and produces a result.

Operand

An operand is a variable, constant, or expression on which an operator works.

Example
int a = 10, b = 5;
c = a + b;

Here:

 + is an operator
 a and b are operands
 c stores the result

2. Classification of Operators in C

C language provides a rich set of operators. They are classified as:

1. Arithmetic Operators
2. Relational Operators
3. Logical Operators
4. Assignment Operators
5. Increment and Decrement Operators
6. Bitwise Operators
7. Conditional (Ternary) Operator
8. Special Operators

3. Arithmetic Operators

Arithmetic operators are used to perform mathematical calculations.

Operator Meaning

+ Addition

Operator Meaning

- Subtraction

* Multiplication

/ Division

% Modulus

Example
int a = 10, b = 3;
printf("%d", a + b); // 13
printf("%d", a % b); // 1

Important Points

 % works only with integers
 Division of integers gives integer result

4. Relational Operators

Relational operators are used to compare two values.
The result is either true (1) or false (0).

Operator Meaning

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Example
int a = 10, b = 20;
printf("%d", a < b); // 1

Relational operators are mostly used in decision making and loops.

5. Logical Operators

Logical operators are used to combine multiple conditions.

Operator Meaning

&& Logical AND

`

! Logical NOT

Truth Table

| A | B | A && B | A || B |
|--|--|--------|--------|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 |

Example
if(a > 0 && b > 0)
{
 printf("Both positive");
}

6. Assignment Operators

Assignment operators are used to assign values to variables.

Operator Meaning

= Simple assignment

+= Add and assign

-= Subtract and assign

*= Multiply and assign

/= Divide and assign

%= Modulus and assign

Example
int a = 10;

a += 5; // a = a + 5

7. Increment and Decrement Operators

These operators increase or decrease a value by 1.

Operator Meaning

++ Increment

-- Decrement

Types

1. Pre-increment (++a)
2. Post-increment (a++)

Example
int a = 5;
printf("%d", a++); // 5
printf("%d", a); // 6

8. Bitwise Operators

Bitwise operators work on binary representation of data.

Operator Meaning

& Bitwise AND

` `

^ Bitwise XOR

~ Bitwise NOT

<< Left shift

>> Right shift

Example
int a = 5, b = 3;
printf("%d", a & b); // 1

Bitwise operators are used in:

 Embedded systems
 Device drivers
 Low-level programming

9. Conditional (Ternary) Operator

This operator is a short form of if–else.

Syntax
condition ? expression1 : expression2;

Example
int max = (a > b) ? a : b;

10. Special Operators in C

10.1 sizeof Operator

Used to find the size of data type or variable.

printf("%d", sizeof(int));

10.2 Comma Operator

Allows multiple expressions.

int a = (b = 3, b + 2);

10.3 Pointer Operators

 & → Address of operator
 * → Value at address operator

int a = 10;
int *p = &a;

10.4 Structure Operator

Used to access structure members.

s.age;

11. Operator Precedence and Associativity

Operator precedence determines which operator is evaluated first.

Example
int x = 10 + 5 * 2; // Result = 20

Associativity

Determines the direction of evaluation (left to right or right to left).

12. Operators Used in Expressions

Expressions can contain:

 Multiple operators
 Variables
 Constants

Example
result = (a + b) * c / d;

13. Advantages of Operators in C

 Make programs short and efficient
 Increase readability
 Improve performance
 Support low-level operations

14. Common Errors with Operators

 Using = instead of ==
 Integer division errors
 Misuse of increment operators
 Ignoring operator precedence

15. Conclusion

Operators are the building blocks of C programs. Understanding different types of operators, their
precedence, and correct usage is essential for writing efficient and error-free programs.

